Introduction to Ultrasound

Michele Schroeder, MD
Associate Emergency Ultrasound Fellowship Director
Baystate Medical Center/Tufts University School of Medicine
Introduction

• No disclosures
Introduction

• Goals
 – Physics and Artifacts
 – Probe selection
 – Knobology
PHYSICS AND ARTIFACTS
Physics and Artifacts

• Physics is.... fun?
Physics and Artifacts

• Physics is important!
 – Probe selection
 – Image creation and optimization
 – Artifacts
Physics and Artifacts

- Ultrasound machine translates sound into 2-D image

- Piezoelectric effect: the charge which builds up in certain solids in response to applied mechanical strain
Physics and Artifacts

• How does the machine create the picture?

 – Depth (position on the screen)
 • Time for sound waves to travel to object and back

 – Echogenicity ("brightness")
 • Amplitude of the returning wave (e.g. "intensity")
 • Affected by distance travelled and substances encountered
Physics and Artifacts

• How does the machine create the picture?
 – Echogenicity (brightness)

Hyperechoic = more echogenic than surrounding structures
Hypoechoic = less echogenic than surrounding structures
Isoechoic = same echogenicity as surrounding structures
Anechoic = no internal echoes
PROBE SELECTION
Probe Selection
Probe Selection

• Frequency
 – Resolution (how clear is the picture?)
 • High frequency
 – Penetration (how far can you see?)
 • Low frequency
ARTIFACTS
Artifacts

• Identification of structures
• Avoid misinterpretation
• Diagnosis
Artifacts

• Posterior acoustic enhancement
• Shadowing
• Mirroring
• Edge artifact
• Side lobe artifact
• Reverberation artifact
Artifacts

• Posterior acoustic enhancement
 – Cystic structures transmit sound better
 • Sound is less attenuated, producing a brighter signal
 – Structures posterior appear brighter compared to other structures at a similar depth
Artifacts

• Posterior acoustic enhancement
Artifacts

• Posterior acoustic enhancement
Artifacts

• Shadowing
 – Caused when sound waves can’t pass through media
 – All/most of the waves are reflected
 • Strong reflection = hyperechoic (white) on screen
 – Machine receives no signal from structures posterior
 • No signal = hypoechoic (black) on the screen
Artifacts
Artifacts

• Mirroring
 – Due to reflection
Artifacts

- Mirroring
Artifacts

- Edge Artifact
 - Cause by refraction
 - Sound is bent at the interface of two media
Artifacts
Artifacts

• Side lobe artifact
 – Lower energy “side lobe” beams
 – If reflection strong enough to return to probe, its information is assimilated into the information from the main beam
Artifacts
Artifacts

• Reverberation artifact
 – Ultrasound beams reflecting between two surfaces
Artifacts
Artifacts

- Reverberation artifact
KNOBOLOGY
Knobology

- Probe orientation
Knobology
Knobology

- Gain
Knobology

- Depth
Knobology

- Color
Knobology

- M-mode
 - Motion mode
 - Information over time
Knobology

• Fanning
 – Probe footprint doesn’t move
 – Angle across the long axis of the probe
Knobology

• Rocking
 – Probe footprint doesn’t move
 – Angle across the short axis of the probe
Knobology

- Sliding
 - Probe footprint moves
Knobology

• General tip
 – Move the probe in only one dimension at a time
 • Slide, then fan
 • Rotate, then rock
Closing Thoughts

• Basic understanding of ultrasound physics
 – Acquire images
 – Understand and interpret artifacts

• Choose wisely

• They’re different, and yet the same

• Have fun!